NeuroAct Communication offers expert guidance to scientific communication.

  • Define a publication strategy: identify objectives, target audience, journals
  • Aid to effective presentation of pharmacological data
  • Experienced scientific writing and editing: research reports, posters, symposia

For more information Contact.


Apomorphine-induced emesis in dogs: differential sensitivity to established and novel dopamine D2/5-HT1A antipsychotic compounds.

Depoortère R, Barret-Grévoz C, Bardin L, Newman-Tancredi A.
Eur J Pharmacol. 2008 Nov 12;597(1-3):34-8. Epub 2008 Aug 24.

Small rodents (mice, rats) are the species of choice for evaluating the pharmacology of centrally acting compounds, such as antipsychotics, whereas toxicology data are routinely obtained from other species (rabbits, dogs, monkeys). Whilst there is a substantial number of "therapeutically relevant" pharmacological models for "antipsychotic-like" activity in small rodents, based on hyperdopaminergic or hypoglutamatergic/NMDA approaches, there is a remarkable paucity of such models in other species. Here, we compared the efficacy and potency of reference and new generation dopamine D2/5-HT1A putative antipsychotics, administered orally, against apomorphine-induced emesis in dogs, a model of central D2 receptor activation that can be implemented with relative ease. Risperidone potently and fully (10 microg/kg) prevented emesis/retching induced by 0.1 mg/kg s.c. apomorphine. SLV313 and F15063 (D2 receptor antagonists/5-HT1A receptor agonists) also abolished emesis/retching, albeit less potently than risperidone (minimal effective dose, MEDs: 10 and 40 microg/kg, respectively). The D2 receptor partial agonists/5-HT1A receptor agonists aripiprazole and bifeprunox, (up to 80 microg/kg) only partially attenuated emesis, as did the peripheral D2 receptor antagonist domperidone. Under the present experimental conditions, haloperidol was only efficacious at the highest dose tested (320 microg/kg). To summarize, dogs are very sensitive to the dopaminergic blocking effects of antipsychotics in this model of D2 receptor activation. This model can thus be advantageously used to investigate the pharmacological activity of novel D2 receptor antagonists/partial agonists in dogs..