NeuroAct Communication offers expert guidance to scientific communication.

  • Define a publication strategy: identify objectives, target audience, journals
  • Aid to effective presentation of pharmacological data
  • Experienced scientific writing and editing: research reports, posters, symposia

For more information Contact.
 

 

F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist and 5-HT1A receptor agonist properties: influence on immediate-early gene expression in rat prefrontal cortex and striatum.

Bruins Slot LA, Lestienne F, Grevoz-Barret C, Newman-Tancredi A, Cussac D.
Eur J Pharmacol. 2009 Oct 12;620(1-3):27-35. Epub 2009 Aug 18.

Brain region-specific modulation of immediate-early gene (IEG) may constitute a marker of antipsychotic drug-like activity. We investigated the effects of the putative antipsychotic drug N-[(2,2-dimethyl-2,3-dihydro-benzofuran-7-yloxy)ethyl]-3-(cyclopent-1-enyl)-benzylamine (F15063), a compound that targets both dopamine D2 and serotonin 5-HT1A receptors, in comparison with haloperidol and clozapine on rat mRNA expression of IEG i.e. the zinc-fingered transcription factors c-fos, fosB, zif268, c-jun and junB, two transcription factors of the nuclear receptor family nur77 and nor1, and the effector IEG arc. F15063 (10 mg/kg) and clozapine (10 mg/kg), but not haloperidol (0.63 mg/kg), induced c-fos and fosB mRNA expression in prefrontal cortex, a region associated with control of cognition and negative symptoms of schizophrenia. In striatum, only c-fos, fosB, junB and nur77 were induced by clozapine whereas all IEG mRNAs were increased by haloperidol and F15063 (from 2.5 mg/kg) with similar high efficacy despite a total absence of F15063-induced catalepsy. However, at 0.63 mg/kg, F15063 induced a lower degree of striatal IEG mRNA expression than haloperidol and pretreatment with the serotonin 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride (WAY100635) (0.63 mg/kg) increased the level of IEG mRNA induction by F15063. Furthermore, (+)-8-hydroxy-2-(di-n-propylamino)tetralin [(+)-8-OH-DPAT] at 0.16 mg/kg decreased haloperidol-induced striatal IEG mRNA expression although it exerted no effects on its own. These results are consistent with an activation of serotonin 5-HT1A receptors by F15063, thus reducing D2 blockade-induced striatal IEG mRNA. Furthermore, the substantial F15063-induced expression of IEGs such as c-fos in striatum is not related to cataleptogenic activity and may act more as a marker of efficacious dopamine D2 receptor blockade.